Министерство образования и науки Российской Федерации Вологодский государственный университет

Кафедра экономической теории, учета и анализа

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Методические указания к выполнению контрольной работы по теме «Разработка целочисленной программы производства продукции» для студентов заочной формы обучения

Факультет экономический

Специальность 080109 «Бухгалтерский учет, анализ и аудит»

Направление: 38.03.01 «Экономика», 38.03.02 «Менеджмент»

Профиль: все профили указанных направлений

УДК 330.45(076)

Методы оптимальных решений: методические указания к выполнению

контрольной работы по теме «Разработка целочисленной программы произ-

водства продукции» для студентов заочной формы обучения. – Вологда:

ВоГУ, 2014. – 44 с.

В методических указаниях приведены задания для выполнения контроль-

ной работы по одной из тем дисциплины «Методы оптимальных решений».

Данная тема охватывает вопросы, посвященные изучению видов и способов

решения задач линейного программирования, ярким примером которых явля-

ется задача определения оптимального способа использования ресурсов пред-

приятия.

Контрольная работа выполняется студентами по вариантам, определяе-

мым по последней цифре зачетной книжки. Все задания контрольной работы

выстроены в логической последовательности.

Методическое пособие предназначено для студентов заочной и заочной

сокращенной форм обучения.

Утверждено редакционно-издательским советом ВоГУ

Составитель Н.А. Никитина, канд. экон. наук, доцент кафедры

экономической теории, учета и анализа ВоГУ

Рецензент И.А. Миткевич, канд. экон. наук, доцент кафедры

экономической теории и менеджмента ВГПУ

Отпечатано: РИО ВоГУ, г. Вологда, ул. С. Орлова, 6

2

общие положения

Промышленное предприятие — сложная система, требующая разработки множества методов, приемов и способов для своего изучения. Одним из таких методов является метод математического моделирования.

Моделирование – метод изучения сложных систем, основанный на изучении не самих систем, а их упрощенных аналогов – моделей. Если модель записана (построена) на языке математических символов и знаков, то она называется математической моделью.

Изучение математических моделей дает возможность планировать (программировать) деятельность промышленного предприятия. Поэтому такие модели часто называют моделями математического программирования¹. Если в такой модели все зависимости между переменными линейны (не содержат переменные в степени, отличной от первой), то математическое программирование может именоваться линейным математическим программированием.

Классическим примером математической задачи линейного программирования выступает задача определения оптимального способа использования ресурсов предприятия.

1. Постановка задачи оптимального способа использования ресурсов предприятия

Предприятие может выпускать продукцию n типов, используя ограниченное количество ресурсов m видов. Заданы нормы затрат ресурсов на продукцию каждого типа, а также запасы ресурсов каждого вида. Требуется определить оптимальные объемы производства каждого типа продукции², обеспечивающие предприятию получение:

- а) максимума выручки от реализации продукции;
- б) минимума затрат на производство продукции;
- в) максимума прибыли от реализации продукции и т.д.

¹ Программирование (один из переводов англ. *programming*) – термин, введенный в 1939 году Леонидом Витальевичем Канторовичем в работе «Математические методы организации и планирования производства» (имеет смысл термина «планирование»)

² Предполагается, что вся производимая продукция реализуется без остатка в данном отчетном периоде

Условные обозначения задачи:

n – количество типов продукции;

j – порядковый номер типа продукции (j = 1, 2, ..., n);

m – количество видов ресурсов;

i – порядковый номер вида ресурса (i = 1, 2, ..., m);

 $a_{i\,j}$ — расход i -го вида ресурса на производства единицы j -го типа продукции, нат.ед./ед.;

 b_{i} – запас *i* -го вида ресурса на предприятии, нат. ед.;

 $p_{\,j}\,$ – цена единицы продукции $\,j\,$ -го типа, д.е./ед.;

 c_{j} — переменные затраты на производство единицы продукции j -го типа, д.е./ед.;

 x_j – планируемый объем выпуска продукции j -го типа, ед.

2. Математическая модель задачи оптимального способа использования ресурсов

- 1. Целевая функция модели:
- а) максимум выручки от реализации продукции:

$$F(x) = \sum_{j=1}^{n} p_j x_j \to max ; (1a)$$

б) минимум себестоимости производимой продукции:

$$F(x) = \sum_{j=1}^{n} c_j x_j \to \min;$$
(16)

в) максимум прибыли от реализации продукции:

$$F(x) = \sum_{j=1}^{n} p_{j} x_{j} - \sum_{j=1}^{n} c_{j} x_{j} \to max$$
 (1B)

2. Система ограничений (включает ограничения по объему используемых ресурсов):

$$\sum_{i=1}^{n} a_{ij} x_{j} \le b_{i} \quad (i = 1, 2, ..., m).$$
(2)

3. Условие неотрицательности переменных:

$$x_i \ge 0. (3)$$

ЗАДАНИЯ К ВЫПОЛНЕНИЮ

Задание 1. Ознакомьтесь с условием задачи оптимального использования ресурсов предприятия и перепишите его в рабочую тетрадь.

Предприятие располагает ресурсами сырья, рабочей силы и оборудования, необходимыми для производства двух типов продукции – А и Б. Исходные данные, демонстрирующие производственные и финансовые показатели деятельности предприятия, приведены в таблице 1.

Таблица 1 Производственные и финансовые показатели деятельности промышленного предприятия

Виды ресурсов	Расход р на единицу пр нат.е	Запасы ресурсов,	
	A	Б	нат.ед.
Производственные показат	ели деятельности	предприятия	
Сырье, кг	a_{11}	a_{12}	$b_{_{I}}$
Рабочая сила, челч.	a_{21}	a_{22}	b_2
Время работы оборудования, станко-см.	a_{3I}	a_{32}	b_3
Финансовые показатели	деятельности пре	дприятия	
Цена единицы продукции, д.е.	p_{I}	p_2	×
Переменные затраты на единицу продукции, д.е.	$c_{\scriptscriptstyle I}$	c_2	×

Предполагается, что вся произведенная продукция подлежит реализации в текущем финансовом периоде.

Требуется определить объемы выпуска каждого типа продукции, обеспечивающие предприятию:

- а) максимум выручки от реализации продукции;
- б) минимум затрат на производство продукции;
- в) максимум прибыли от реализации продукции.

Задание 2. Выберите исходные данные по номеру зачетной книжки из таблицы 2.

Задание 3. Введите систему условных обозначений, необходимых для построения математической модели задачи линейного программирования.

Задание 4. Составьте математическую модель задачи линейного программирования (задачи оптимального использования ресурсов предприятия), в которой требуется определить объемы производства продукции каждого типа, обеспечивающие предприятию:

- а) максимум выручки от реализации продукции;
- б) минимум затрат на производство продукции;
- в) максимум прибыли от реализации продукции.

Таблица 2

Показатель							анном				
	(номер вар	ианта	опред	еляето	п оп к	ослед	ней ци	іфре за	ачетно	й кни:	жки)
	пробный вариант ³	0	1	2	3	4	5	6	7	8	9
a_{11}	6	4	5	1	1	5	3	4	4	2	4
a_{12}	5	3	2	4	6	6	2	3	5	5	3
a_{21}	5	6	5	7	3	5	5	3	3	4	2
a_{22}	2	5	3	5	5	1	1	4	3	1	5
a_{31}	10	8	4	8	6	2	5	1	2	3	5
a_{32}	3	2	4	5	5	3	3	2	5	5	4
$b_{_I}$	60	30	34	22	65	74	90	60	45	55	76
b_2	66	46	40	47	70	45	72	41	35	40	73
$b_{\scriptscriptstyle 3}$	75	38	45	50	94	39	112	18	33	62	100
p_1	14	20	21	18	15	45	21	15	22	35	15
p_2	16	22	18	16	18	40	12	23	25	40	25
c_{I}	6	5	11	3	9	20	9	5	10	32	10
c_2	10	10	13	3	12	23	6	7	9	34	15

Задание 5. Решите задачу оптимального использования ресурсов предприятия по критерию максимум прибыли от реализации продукции двумя методами: 1) графическим; 2) симплексным.

Сформулируйте вывод по итогам решения задачи.

Задание 6. Проверьте полученное решение задачи на целочисленность. В случае получения нецелочисленного решения, приступите к выполнению следующего задания.

Задание 7. Найдите целочисленное решение задачи методом Гомори. Приведите последовательно все расчетные таблицы и охарактеризуйте последнюю симплексную таблицу – целочисленное решение задачи.

Задание 8. Проверьте правильность полученных Вами нецелочисленного и целочисленного решения, используя данные Приложения 1.

³ Вариант, приведенный в примере решения всех заданий контрольной работы

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Задание 1. Запись условия задачи оптимального способа использования ресурсов предприятия

Предприятие располагает ресурсами сырья, рабочей силы и оборудования, необходимыми для производства двух типов продукции – A и Б.

Исходные данные, демонстрирующие производственные и финансовые показатели деятельности предприятия, приведены в таблице 1.

Таблица 1 Производственные и финансовые показатели деятельности промышленного предприятия

Виды ресурсов	Расход р на единицу типа, на	Запасы ресурсов,	
	A	Б	нат.ед.
Производственные показатели	деятельности	предприятия	
Сырье, кг	a_{II}	a_{12}	$b_{_{I}}$
Рабочая сила, челч.	a_{21}	a_{22}	b_2
Время работы оборудования, станко-см.	a_{31}	a_{32}	b_3
Финансовые показатели дея	тельности про	едприятия	
Цена единицы продукции, д.е.	p_{I}	p_{2}	×
Переменные затраты на единицу продукции, д.е.	c_{I}	c_2	×

Предполагается, что вся произведенная продукция подлежит реализации в текущем финансовом периоде.

Требуется определить объемы выпуска каждого типа продукции, обеспечивающие предприятию:

- а) максимум выручки от реализации продукции;
- б) минимум затрат на производство продукции;
- в) максимум прибыли от реализации продукции.

Задание 2. Выбор исходных данных по номеру зачетной книжки

Из таблицы 2 примем исходные данные пробного варианта для последующего решения задачи оптимального использования ресурсов. Тогда таблица 1 примет вид:

Таблица 1'
Производственные и финансовые показатели деятельности промышленного предприятия

Виды ресурсов	Расход р на единицу типа, на А	Запасы ресурсов, нат.ед.	
Производственные показа	тели деятельно	сти предприят	RN
Сырье, кг	$a_{11} = 6$	$a_{12} = 5$	$b_{I}=60$
Рабочая сила, челч.	$a_{21} = 5$	$a_{22} = 2$	b ₂ =66
Время работы оборудования, станко-см.	$a_{31} = 10$	$a_{32} = 3$	$b_3 = 75$
Финансовые показател	и деятельности	предприятия	
Цена единицы продукции, д.е.	$p_1 = 14$	$p_2 = 16$	×
Переменные затраты на единицу продукции, д.е.	$c_1 = 6$	$c_2 = 10$	×

Задание 3. Ввод условных обозначений задачи оптимального использования ресурсов предприятия

Введем систему условных обозначений, необходимых для построения математической модели задачи линейного программирования:

- n количество типов продукции (j = 1, 2, ..., n);
- m количество видов ресурсов (i = 1, 2, ..., m);
- a_{ij} расход i -го вида ресурса на производство единицы j -го типа продукции, нат. ед./ед.;
 - b_i запас i -го ресурса на складе, нат. ед.;
 - p_{i} цена реализации единицы j -го типа продукции, д.е./ед.;
 - c_{j} переменные затраты на единицу j -го типа продукции, д.е./ед.;
 - x_{i} планируемое к выпуску количество j -го типа продукции, ед.

Задание 4. Построение математической модели задачи линейного программирования с различными целевыми функциями

Составим математическую модель задачи линейного программирования (задачи оптимального использования ресурсов предприятия), в которой требуется определить объемы производства продукции каждого типа, обеспечивающие предприятию:

а) максимум выручки от реализации продукции

Объемы производства продукции типа A и типа Б обозначены как x_1 и x_2 соответственно. Зная размер выручки на единицу продукции каждого типа (p_1 и p_2), определим общий размер выручки, который может получить предприятие при производстве и реализации продукции первого типа в объеме x_1 ед. и второго типа в объеме x_2 ед.: общая выручка предприятия будет равна $(14x_1 + 16x_2)$ д.е.

По условию задачи объем производства каждого типа продукции должен быть таким, чтобы выручка предприятия была максимальной. Таким образом, получаем целевую функцию задачи линейного программирования (далее ЗЛП):

$$F(X) = 14x_1 + 16x_2 \rightarrow max.$$

Каждая единица продукции первого типа производится с использованием 6 кг сырья, единица продукции второго типа — с использованием 5 кг сырья. Тогда полные затраты сырья на производство всего объема первого типа продукции составят $6x_1$ кг, всего объема второго типа продукции — $5x_2$ кг.

Суммарная величина затрат сырья на выпуск обоих типов продукции $(6x_1 + 5x_2)$ не может превышать размера запасов сырья, которым располагает предприятие (общий запас сырья на предприятии составляет 60 кг.). Таким образом, получаем первое ограничение ЗЛП: общие затраты сырья на производство продукции обоих типов не должны превышать имеющихся у предприятия запасов данного вида ресурса:

$$6x_1 + 5x_2 \le 60$$
.

На каждую единицу продукции первого типа предприятие затрачивает 5 чел.часов рабочей силы, на каждую единицу продукции второго типа –2 чел.-час. Тогда затраты рабочей силы на производство всего объема первого типа продукции составят $5x_1$ чел.-час., второго типа продукции – $2x_2$ чел.-час. Всего предприятие располагает рабочей силой в размере 66 чел.-часов. Получаем второе ограничение ЗЛП: общие затраты рабочей силы на производство продукции обоих типов не должны превышать имеющихся у предприятия запасов данного вида ресурса:

$$5x_1 + 2x_2 \le 66$$
.

Аналогично получаем третье ограничение ЗЛП: общие затраты времени работы оборудования на производство продукции обоих типов не должны превышать имеющихся у предприятия запасов данного вида ресурса:

$$10x_1 + 3x_2 \le 75$$
.

Дополнительно накладываем ограничения на неотрицательность переменных (количество единиц продукции типа A и типа Б не может быть отрицательным):

$$x_1 \ge 0, x_2 \ge 0$$
.

Таким образом, математическое выражение задачи линейного программирования имеет следующий вид:

1. Целевая функция задачи (критерий оптимальности – максимум выручки от реализации продукции):

$$F(X) = 14x_1 + 16x_2 \rightarrow max. \tag{1a}$$

2. Система ограничений (содержит ограничения на количество используемых ресурсов):

$$\begin{cases}
6x_1 + 5x_2 \le 60, \\
5x_1 + 2x_2 \le 66, \\
10x_1 + 3x_2 \le 75.
\end{cases} \tag{2}$$

3. Условие неотрицательности переменных:

$$x_1 \ge 0, \ x_2 \ge 0.$$
 (3)

б) минимум затрат на производство продукции

Математическая модель задачи оптимального использования ресурсов по критерию минимума затрат на производство всех видов продукции будет от-

личается от задачи (1a)-(2)-(3) только целевой функцией: суммарные переменные затраты на производство определяются как произведение переменных затрат на единицу производимой продукции на количество такого типа продукции. Система ограничений и условия неотрицательности переменных остаются без изменения. Следовательно, математическая модель задачи при данном критерии оптимальности имеет вид:

1. Целевая функция задачи (критерий оптимальности – минимум затрат на производство продукции):

$$F(X) = 6x_1 + 10x_2 \to min \tag{16}$$

2. Система ограничений (содержит ограничения на количество используемых ресурсов):

$$\begin{cases}
6x_1 + 5x_2 \le 60, \\
5x_1 + 2x_2 \le 66, \\
10x_1 + 3x_2 \le 75.
\end{cases} \tag{2}$$

3. Условие неотрицательности переменных:

$$x_1 \ge 0, \ x_2 \ge 0.$$
 (3)

в) максимум прибыли от реализации продукции

Математическая модель задачи линейного программирования на максимум прибыли от реализации продукции будет отличаться от предыдущих двух задач также только целевой функцией: прибыль с единицы продукции каждого типа определяется как разность между выручкой и переменными затратами на ее производство. Система ограничений и условия неотрицательности переменных остаются без изменения. Следовательно, математическая модель задачи при данном критерии оптимальности имеет вид:

1. Целевая функция задачи (критерий оптимальности – максимум прибыли от реализации продукции):

$$F(X) = (14x_1 + 16x_2) - (6x_1 + 10x_2) = 8x_1 + 6x_2 \to max.$$
 (1B)

2. Система ограничений (содержит ограничения на количество используемых ресурсов):

$$\begin{cases}
6x_1 + 5x_2 \le 60, \\
5x_1 + 2x_2 \le 66, \\
10x_1 + 3x_2 \le 75.
\end{cases} \tag{2}$$

3. Условие неотрицательности переменных:

$$x_1 \ge 0, \ x_2 \ge 0.$$
 (3)

Задание 5. Поиск решения задачи оптимального использования ресурсов предприятия (по критерию максимума прибыли от реализации продукции)

1. Решение ЗЛП графическим методом

<u>1 шаг</u>. Разметка и обозначение осей в Декартовой системе координат.

Объемы производства продукции первого типа (x_1) будем откладывать по оси абсцисс, а объемы производства продукции второго типа (x_2) – по оси ординат.

<u>2 шаг.</u> Построение прямых, соответствующих неравенствам системы ограничений.

В системе ограничений (2) задачи (1в)-(2)-(3) заменим знаки неравенств (≤) на знаки равенства (=). Тогда мы получим уравнения трех прямых линий:

$$6x_1 + 5x_2 = 60$$
 $x_2 = 12 - 10x_1$ $5x_1 + 2x_2 = 66$ или, что то же самое, $x_2 = 33 - 2.5x_1$ $10x_1 + 3x_2 = 75$ $x_2 = 75/3 - 10/3x_1$

Подставим по два произвольных значения переменной x_1 в каждое из уравнений прямой линии и получим по два значения переменной x_2 :

- для прямой
$$x_2=12-10x_1$$
: при $x_1=1$ $x_2=2$; $x_1=1,2$ $x_2=0$; - для прямой $x_2=33-2,5x_1$: при $x_1=12$ $x_2=3$; $x_1=10$ $x_2=8$; - для прямой $x_2=75/3-10/3x_1$: при $x_1=1,5$ $x_2=20$; $x_1=4,5$ $x_2=10$.

Следовательно, нам известны координаты двух точек каждой из прямых. Построим три прямые в принятой системе координат (рис. 1).

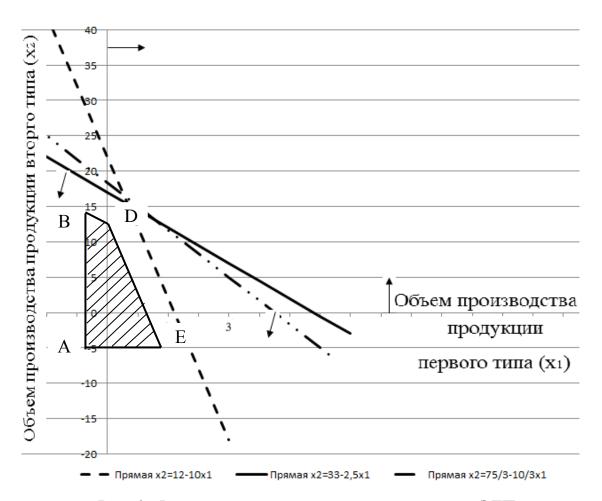


Рис. 1. Формирование многоугольника решений ЗЛП

3 шаг. Построение многоугольника решений.

а) определение полуплоскостей решений для неравенств системы ограничений Каждое неравенство системы (2) геометрически определяет полуплоскость его решений с граничной прямой $a_{i1} \cdot x_1 + a_{i2} \cdot x_2 = b_i \ \left(i = \overline{1,m}\right)$. Так, для первого неравенства граничной прямой является $x_2 = 12 - 10x_1$. Эта прямая рассекает всю плоскость графика на две части: в одной из этих частей исходное неравенство $6x_1 + 5x_2 \le 60$ выполняется, а в другой – не выполняется.

Подставляя в исходное неравенство $6x_1 + 5x_2 \le 60$ координаты произвольной точки, например, точки A(0;0), получаем, что неравенство выполняется $(6 \cdot 0 + 5 \cdot 0 \le 60)$. Следовательно, его решением будет любая точка, лежащая в той же полуплоскости от прямой $x_2 = 12 - 10x_1$, в которой располагалась подставляемая точка A(0;0). На рисунке это обозначено стрелкой, идущей от прямой $x_2 = 12 - 10x_1$ вниз, к точке A(0;0).

Аналогично подставляем координаты точки A(0;0) и во второе неравенство $5x_1 + 2x_2 \le 66$. Оно также выполняется $(5 \cdot 0 + 2 \cdot 0 \le 66)$. Следовательно, его решением будет любая точка, лежащая в той полуплоскости от граничной прямой $x_2 = 33 - 2.5x_1$, в которой располагалась подставляемая точка A(0;0). На рисунке это обозначено стрелкой, идущей от прямой $x_2 = 33 - 2.5x_1$ вниз, к точке A(0;0).

Аналогично получаем и стрелку, идущую вниз от прямой $x_2 = 75/3 - 10/3x_1$ к точке A(0;0).

б) нанесение на график условий неотрицательности переменных

Условие неотрицательности переменных (3) ($x_1 \ge 0$, $x_2 \ge 0$) также должно быть отражено на графике.

Переменная $x_1 \ge 0$ в I и IV координатных углах, а переменная $x_2 \ge 0$ - в I и II углах. Следовательно, обе одновременно они неотрицательны только в первом координатном угле. На графике это ограничение отражено посредством стрелок, идущих перпендикулярно осям абсцисс и ординат.

в) формирование области допустимых решений

Если система условий задачи (2) и (3) совместна (т. е. имеет хотя бы одно решение), то полуплоскости, пересекаясь, образуют общую часть, называемую многоугольником решений ЗЛП. На рисунке 1 данная область обозначена штриховкой.

4 шаг. Поиск оптимального решения ЗЛП

Допустимыми решениями ЗЛП являются любые точки многоугольника решений (заштрихованной области графика), а оптимальным решением будут координаты только той точки, в которой целевая функция ЗЛП максимальна. Это может быть лишь одна из четырех точек вершин многоугольника решений – точка A(0;0), B(0;25), $D(\frac{195}{32};\frac{150}{32})^4$ или E(1,2;0).

Проверим значение прибыли предприятия в каждой из этих точек много-

14

угольника:

 $^{^4}$ Поскольку точка В является точкой пересечения двух прямых (первой и третьей), то ее координаты можно определить, решив систему двух уравнений – первого и третьего: $\begin{cases} 6x_1 + 5x_2 = 60 \\ 10x_1 + 3x_2 = 75 \end{cases}$

1) в точке A(0; 0) значение прибыли равно:

$$F(0; 0) = 8x_1 + 6x_2 = 8 \cdot 0 + 6 \cdot 0 = 0$$
 д.е.;

2) в точке В (0; 25) значение прибыли равно:

$$F(0; 25) = 8 \cdot 0 + 6 \cdot 25 = 150$$
 д.е;

3) в точке $D(\frac{195}{32}; \frac{150}{32})$ значение прибыли равно:

$$F\left(\frac{195}{32}; \frac{150}{32}\right) = 8 \cdot \frac{195}{32} + 6 \cdot \frac{150}{32} = \frac{2460}{32} = 76\frac{28}{32} = 76\frac{14}{16}$$
 д.е.;

4) в точке Е (1,2; 0) значение прибыли равно:

$$F(1,2; 0) = 8 \cdot 1, 2 + 6 \cdot 0 = 9,6$$
 д.е.

Как видим, максимальный размер прибыли получается при подстановке в функцию $F(X) = 8x_1 + 6x_2$ координат точки D: $x_1 = \frac{195}{32}$ и $x_2 = \frac{150}{32}$.

Таким образом, оптимальное решение графическим методом найдено:

$$X^* = (x_1^*, x_2^*) = (\frac{195}{32}; \frac{150}{32}); F_{max}(X^*) = 76\frac{14}{16} \text{ o.e.}$$

Это означает, что при производстве $\frac{195}{32}$ ед. продукции перового типа и $\frac{150}{32}$ ед. продукции второго типа прибыль предприятия будет максимальной и составит $76\frac{14}{16}$ д.е.

2. Решение ЗЛП симплексным методом

<u>1 шаг.</u> Приведение ЗЛП к базисному виду

Решение ЗЛП симплексным методом следует начинать с приведения исходной задачи к базисному виду. Базисной формой записи задачи линейного программирования называется запись, при которой выполняются следующие условия:

- а) все ограничения в системе (2) имеют форму равенств (записаны в виде уравнений);
- б) в каждое такое уравнение входит по одной базисной переменной (базисной называется переменная с множителем +1, не встречающаяся в других уравнениях);
 - в) в целевой функции базисные переменные учитываются с множителем 0;

г) все переменные (исходные и базисные) подчиняются условию неотрицательности.

В каждое ограничение системы (2) введем по одной дополнительной неотрицательной переменной:

- в первое неравенство введем переменную x_3 объем неиспользуемого сырья (остаток сырья) при определенном плане производства обоих типов продукции, кг.;
- во второе неравенство включим переменную x_4 объем неиспользуемых (остаток) трудовых ресурсов, чел.-ч.;
- в третье неравенство введем переменную x_5 объем неиспользуемого (остаток) времени работы оборудования, станко-см.

Система ограничений примет вид:

$$\begin{cases} 6x_1 + 5x_2 + x_3 = 60, \\ 5x_1 + 2x_2 + x_4 = 66, \\ 10x_1 + 3x_2 + x_5 = 75. \end{cases}$$

Переменные x_3 , x_4 , x_5 являются базисными, т.к. имеют перед собой множитель +1 и не встречаются в других уравнениях.

В целевую функцию ЗЛП переменные x_3, x_4, x_5 войдут с нулевыми коэффициентами:

$$F(X) = 18x_1 + 6x_2 + 0x_3 + 0x_4 + 0x_5 \rightarrow max$$
.

Наложим дополнительное условие неотрицательности всех переменных (новые базисные переменные - x_3 , x_4 , x_5 - тоже не могут быть отрицательными, поскольку представляют из себя остатки ресурсов в распоряжении предприятия):

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$.

Тогда математическая модель задачи оптимального использования ресурсов, записанная в базисной форме, примет вид:

$$F(X) = 18x_1 + 6x_2 + 0x_3 + 0x_4 + 0x_5 \to max \tag{4}$$

$$\begin{cases}
6x_1 + 5x_2 + x_3 = 60, \\
5x_1 + 2x_2 + x_4 = 66, \\
10x_1 + 3x_2 + x_5 = 75.
\end{cases}$$
(5)

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0.$$
 (6)

<u>2 шаг.</u> Построение первого опорного (худшего) плана производства продукции обоих типов.

Основные переменные x_1 , x_2 принимаем равными нулю: $x_1 = 0$ и $x_2 = 0$. Тогда из уравнений системы ограничений (5) получаем, что переменные x_3 , x_4 , x_5 соответственно равны: $x_3 = 60$, $x_4 = 66$, $x_5 = 75$. Таким образом, первое опорное решение будет следующим:

$$x_1 = 0$$
 ед., $x_2 = 0$ ед., $x_3 = 60$ кг, $x_4 = 66$ чел.-ч., $x_5 = 75$ станко-см.

Это означает, что оба типа продукции x_1 и x_2 не производятся и все виды ресурсов полностью остаются неиспользованными. При этом целевая функция $F(X) = 8x_1 + 6x_2 + 0x_3 + 0x_4 + 0x_5 = 8 \cdot 0 + 6 \cdot 0 + 0 \cdot 60 + 0 \cdot 66 + 0 \cdot 75 = 0$ д.е., т.е. предприятие прибыли не получает.

3 шаг. Построение первой симплексной таблицы

Все данные необходимо занести в симплексную таблицу, общий вид которой представлен в таблице 2.

Таблица 2 Общий вил симплексной таблицы

				_ 1	r <u></u>			ion iuo				
			c_{j}	c_{I}	c_2		C_n	C_{n+1}	C_{n+2}		C_{n+k}	
			x_j	x_{I}	x_2		\mathcal{X}_n	\mathcal{X}_{n+1}	X_{n+2}		X_{n+k}	Θ_i
i	C_{i}	Б	b_{i}									
1	C_{n+1}	X_{n+1}	$b_{_{I}}$	a_{11}	a_{12}		a_{In}	$a_{1 n+1}$	$a_{1 n+2}$		$a_{1 n+k}$	Θ_1
2	C_{n+2}	X_{n+2}	b_2	a_{21}	a_{22}		a_{2n}	$a_{2 n+1}$	$a_{2 n+2}$		$a_{2 n+k}$	Θ_2
•••	•••			•••				•••	•••		•••	
m	C_{n+m}	X_{n+m}	$b_{\scriptscriptstyle m}$	a_{m1}	a_{m2}		a_{mn}	$a_{m n+1}$	$a_{m n+2}$		$a_{m n+k}$	Θ_m
m+1	Λ		F(x)=?	Λ	Λ		Λ	Λ	Λ		٨	×
		J		~ 1	~ 2	•••	Δ_n	Δ_{n+1}	Δ_{n+2}	•••	Δ_{m+k}	

i – количество строк симплексной таблицы (соответствует количеству базисных переменных плюс одна строка), $i=1,\,2,\,...,\,m$, $\left(m+1\right)$;

j — количество столбцов симплексной таблицы, заполненных основными и базисными переменными (равно общему числу переменных), $j=1, 2, ..., n \cup n, n+1, n+2, ..., (m+k)$;

- c_i коэффициенты при <u>базисных</u> переменных в целевой функции: размер прибыли на единицу продукции, д.е./ед.;
- c_j коэффициенты при <u>всех</u> переменных в целевой функции: размер прибыли на единицу продукции или ресурса, д.е./ед.;
 - E базис (набор базисных переменных) при данном плане производства;
 - b_i значение базисных переменных при данном плане производства, нат. ед.;
- F(x) значение целевой функции (прибыли) при b_i -х значениях базисных переменных, д.е.;
 - a_{ij} коэффициенты при переменных в системе ограничений (5), нат.ед./ед.;
- Δ_j дельта-оценки (оценки ввода новых переменных в базис). При решении задачи на максимум целевой функции в (m+1)-ой строке не должно быть отрицательных дельта-оценок. Наибольшая по модулю из отрицательных дельта-оценок указывает на ключевой столбец, переменная которого войдет в базис следующего плана производства;
- Θ_i тета-оценки (оценки вывода переменных из базиса). Среди тета-оценок в последнем столбце всегда выбирается минимальная. Она указывает на ключевую строку, переменная которой покинет следующий базис.

Заносим первый опорный план в первую симплексную таблицу (табл. 3).

Таблица 3 **Первая симплексная таблица**

			c_{j}	8	6	0	0	0	
			x_{j}	x_{I}	x_2	X_3	X_4	x_5	Θ_i
i	C_{i}	Б	b_{i}						
1	0	x_3	60	6	5	1	0	0	
2	0	X_4	66	5	2	0	1	0	
3	0	X_5	75	10	3	0	0	1	
4	Δ		F(x)=0						

4 шаг. Проверка первого опорного плана на оптимальность.

Для определения оптимальности или неоптимальности первого опорного плана производства необходимо рассчитать для каждого столбца дельтаоценки по следующей формуле:

$$\Delta_j = \sum_{i=1}^m c_i \cdot a_{ij} - c_j.$$

Для первого столбца дельта-оценка будет равна:

$$\Delta_1 = (0.6 + 0.5 + 0.10) - 8 = -8 < 0.$$

Для второго столбца дельта-оценка составляет:

$$\Delta_2 = (0 \cdot 5 + 0 \cdot 2 + 0 \cdot 3) - 6 = -6 < 0.$$

Аналогично рассчитываем оценки для третьего, четвертого и пятого столбцов:

$$\begin{split} &\Delta_3 = \left(0 \cdot I + 0 \cdot 0 + 0 \cdot 0\right) - 0 = 0 \;, \\ &\Delta_4 = \left(0 \cdot 0 + 0 \cdot I + 0 \cdot 0\right) - 0 = 0 \;, \\ &\Delta_5 = \left(0 \cdot 0 + 0 \cdot 0 + 0 \cdot I\right) - 0 = 0 \;. \end{split}$$

Запишем полученные дельта-оценки в последнюю строку симплексной таблицы. Тогда таблица 3 примет следующий вид:

Таблица 3.1 Расчет **Д**-оценок в первой симплексной таблице

			c_{j}	8	6	0	0	0	
				x_{I}	x_2	x_3	X_4	x_5	Θ_i
			x_{j}						- 1
i	C_{i}	Б	b_i						
1	0	X_3	60	6	5	1	0	0	
2	0	X_4	66	5	2	0	1	0	
3	0	X_5	75	10	3	0	0	1	
4			F(x)=0						
7	Δ	^ j		$\Delta_1 = -8$	$\Delta_2 = -6$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	

Поскольку среди дельта-оценок имеются отрицательные ($\Delta_1 = -8 < 0 \,$ и $\Delta_2 = -6 < 0$), то построенный опорный план не является оптимальным: при-

быль от реализации продукции обоих типов может быть больше, чем F(x)=0 $\partial.e.$ Данное решение задачи необходимо улучшать.

<u>5 шаг.</u> Построение второго плана производства.

а) определение ключевого столбца

Наибольшей <u>по модулю</u> из <u>отрицательных</u> дельта-оценок является Δ_2 . Она находится в первом столбце, поэтому *первый столбец является ключевым*. Переменная, которая располагается в ключевом столбце (переменная x_1), должна вводиться в состав базисных переменных в следующей симплексной таблице.

б) определение ключевой строки

Поскольку переменную x_1 нужно ввести в состав базисных переменных, то нужно определить, какую из трех переменных x_3 , x_4 , x_5 она вытеснит из базиса, т.е. нужно определить ключевую строку. Для каждого положительного элемента $a_{i1} > 0$ первого ключевого столбца найдем отношение:

$$\Theta_i = \frac{b_i}{a_{i1}}.$$

Полученные значения Θ_i запишем в последний столбец таблицы 3.1 и получим таблицу 3.2.

Таблица 3.2 **Расчет ⊙ - оценок в первой симплексной таблице**

			c_{j}	8	6	0	0	0	
				x_{I}	x_2	X_3	X_4	x_5	Θ_{i}
			X_{j}						
i	C_{i}	Б	b_{i}						
1	0	x_3	60	6	5	1	0	0	60/6=10
2	0	X_4	66	5	2	0	1	0	66/5=13,2
3	0	x_5	75	10	3	0	0	1	75/10=7,5
4	Δ	' j	F(x)=0	$\Delta_1 = -8$	$\Delta_2 = -6$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	×

Из значений, посчитанных в столбце Θ_i , выберем наименьшее: $\Theta_3 = 7.5$. Та строка, где Θ_i имеет наименьшее значение, называется *ключевой (тремья строка)*. Она указывает на переменную, которая из базиса <u>выйдет</u>: переменная x_5 , уступив свое место переменной x_1 .

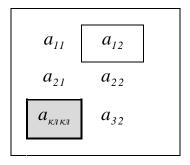
Таким образом, в следующей симплексной таблице (табл. 4) базисными переменными будут: x_3 , x_4 , x_1 .

в) определение ключевого элемента

г) заполнение второй симплексной таблицы

Заполнение новой симплексной таблицы производят с использованием следующих правил:

- 1). Правило бывшей ключевой строки: все элементы бывшей ключевой строки делятся на ключевой элемент $a_{\kappa_{\pi\kappa\pi}}$;
- 2). Правило бывшего ключевого столбца: все элементы бывшего ключевого столбца обнуляются, за исключением того, который был ключевым: на его месте уже располагается единица;
- 3). Все остальные элементы (b_1 , b_2 , a_{12} , a_{13} ...), кроме элементов Θ_i , определяются по правилу прямоугольника:
- в симплексной таблице мысленно составляется такой прямоугольник, чтобы пересчитываемый элемент и ключевой элемент $a_{\kappa n \kappa n}$ были в его противоположных углах:



- новое значение пересчитываемого элемента определяется как разница между старым значением и произведением двух других углов прямоугольника, деленных на ключевой элемент:

$$a_{12}^{H} = a_{12}^{c} - \frac{a_{11}^{c} \cdot a_{32}^{c}}{a_{\kappa_{11}\kappa_{11}}}.$$

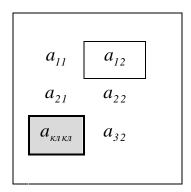
Используем эти правила для составления новой симплексной таблицы:

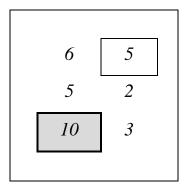
- 1. Правило бывшей ключевой строки: все элементы ключевой строки первой симплексной таблицы 3.2 (строка 3) делим на ключевой элемент $a_{31} = 10$ и записываем на том же месте во второй симплексной таблице (табл. 4);
- 2. Правило бывшего ключевого столбца: все элементы бывшего ключевого столбца обнуляем, кроме того элемента, который был ключевым: на его месте в новой таблице уже располагается единица (табл. 4).

Таблица 4 Вторая симплексная таблица

			c_{j}	8	6	0	0	0	
			x_{j}	x_{I}	x_2	x_3	X_4	x_5	Θ_i
i	C_{i}	Б	b_{i}						
1	0	x_3		0					
2	0	X_4		0					
3	8	x_1	75/10	1	3/10	0	0	1/10	
4	Δ	j	F(x)=?						

- 3). Все остальные элементы ($b_{I},\ b_{2},\ a_{II},\ a_{I2}$...), кроме элементов $\Theta_{i},$ определяем по правилу прямоугольника:
- в симплексной таблице 3.2 мысленно составим такой прямоугольник, чтобы пересчитываемый элемент $a_{\scriptscriptstyle 12}$ и ключевой элемент $a_{\scriptscriptstyle \kappa \imath \kappa \imath}$ были в его противоположных углах:





- новое значение пересчитываемого элемента определяется как разница между старым значением и произведением двух других углов прямоугольника, деленных на ключевой элемент:

$$a_{12}^{H} = a_{12}^{c} - \frac{a_{11}^{c} \cdot a_{32}^{c}}{a_{max}},$$
 $a_{12}^{H} = 5 - \frac{6 \cdot 3}{10} = \frac{32}{10}.$

Аналогично посчитаем a_{13} , a_{14} , a_{15} , a_{22} , a_{23} , a_{24} , a_{25} , b_1 , b_2 для второй симплексной таблицы:

$$\begin{aligned} a_{I3}^{"} &= a_{I3}^{c} - \frac{a_{II}^{c} \cdot a_{33}^{c}}{a_{\kappa I \kappa I}}; & a_{I3}^{"} &= I - \frac{6 \cdot 0}{10} = I; \\ a_{I4}^{"} &= a_{I4}^{c} - \frac{a_{II}^{c} \cdot a_{34}^{c}}{a_{\kappa I \kappa I}}; & a_{I4}^{"} &= 0 - \frac{6 \cdot 0}{10} = 0; \\ a_{I5}^{"} &= a_{I5}^{c} - \frac{a_{II}^{c} \cdot a_{35}^{c}}{a_{\kappa I \kappa I}}; & a_{I5}^{"} &= 0 - \frac{6 \cdot 1}{10} = -\frac{6}{10}; \\ a_{22}^{"} &= a_{22}^{c} - \frac{a_{21}^{c} \cdot a_{32}^{c}}{a_{\kappa I \kappa I}}; & a_{22}^{"} &= 2 - \frac{5 \cdot 3}{10} = \frac{5}{10}; \\ a_{23}^{"} &= a_{23}^{c} - \frac{a_{21}^{c} \cdot a_{33}^{c}}{a_{\kappa I \kappa I}}; & a_{23}^{"} &= 0 - \frac{5 \cdot 0}{10} = 0; \\ a_{24}^{"} &= a_{24}^{c} - \frac{a_{21}^{c} \cdot a_{34}^{c}}{a_{\kappa I \kappa I}}; & a_{25}^{"} &= 0 - \frac{5 \cdot 1}{10} = -\frac{5}{10}; \\ a_{25}^{"} &= a_{25}^{c} - \frac{a_{21}^{c} \cdot a_{35}^{c}}{a_{\kappa I \kappa I}}; & a_{25}^{"} &= 0 - \frac{5 \cdot 1}{10} = -\frac{5}{10}; \\ b_{I}^{"} &= b_{I}^{c} - \frac{b_{3}^{c} \cdot a_{2I}^{c}}{a_{\kappa I \kappa I}}; & b_{I}^{"} &= 60 - \frac{75 \cdot 6}{10} = \frac{150}{10}; \\ b_{2}^{"} &= b_{2}^{c} - \frac{b_{3}^{c} \cdot a_{2I}^{c}}{a_{\kappa I \kappa I}}; & b_{2}^{"} &= 66 - \frac{75 \cdot 5}{10} = \frac{285}{10}. \end{aligned}$$

Заполним вторую симплексную таблицу (табл. 4.1) полученными данными.

Таблица 4.1 Вторая симплексная таблица

			c_{j}	8	6	0	0	0	
			x_{j}	x_{I}	x_2	x_3	X_4	x_5	Θ_i
i	c_{i}	Б	b_{i}						
1	0	x_3	150/10	0	32/10	1	0	-6/10	
2	0	X_4	285/10	0	5/10	0	1	-5/10	
3	8	x_1	75/10	1	3/10	0	0	1/10	
4	Δ	j	F(x)=60						

Таким образом, получили второй план производства, при котором предприятие производит 75/10=7,5 ед. продукции первого типа и 0 ед. продукции второго типа (т.к. переменная x_2 в базисе отсутствует), при этом у предприятия остается в наличии сырье в количестве 150/10=15 кг. и трудовые ресурсы в объеме 285/10=28,5 чел.-часов. Время работы станочного оборудования используется полностью (т.к. переменная x_5 в базисе отсутствует). Размер прибыли предприятия составляет $F(X) = 8 \cdot 7,5 + 6 \cdot 0 + 0 \cdot 15 + 0 \cdot 28,5 + 0 \cdot 0 = 60$ д.е.

<u>6 шаг (повторение 4 шага).</u> Проверка второго плана производства на оптимальность.

Для проверки необходимо рассчитать для каждого столбца дельта-оценки по следующей формуле:

$$\Delta_j = \sum_{i=1}^m c_i \cdot a_{ij} - c_j.$$

Для первого столбца дельта-оценка будет равна:

$$\Delta_I = (0 \cdot 0 + 0 \cdot 0 + 8 \cdot 1) - 8 = 0.$$

Для второго столбца дельта-оценка составляет:

$$\Delta_2 = \left(0 \cdot \frac{32}{10} + 0 \cdot \frac{5}{10} + 8 \cdot \frac{3}{10}\right) - 6 = \frac{24}{10} - 6 = -\frac{36}{10}.$$

Аналогично рассчитываем оценки для третьего, четвертого и пятого столбцов:

$$\begin{split} & \Delta_3 = \left(0 \cdot 1 + 0 \cdot 0 + 8 \cdot 0\right) - 0 = 0 \,, \\ & \Delta_4 = \left(0 \cdot 0 + 0 \cdot 1 + 8 \cdot 0\right) - 0 = 0 \,, \\ & \Delta_5 = \left(0 \cdot -\frac{6}{10} + 0 \cdot -\frac{5}{10} + 8 \cdot \frac{1}{10}\right) - 0 = \frac{8}{10} \,. \end{split}$$

Запишем полученные дельта-оценки в последнюю строку симплексной таблицы 4.1. Тогда таблица 4.1 примет следующий вид:

			c_{j}	8	6	0	0	0	
			x_{j}	x_{I}	X_2	X_3	X_4	X_5	Θ_i
i	C_{i}	Б	b_{i}						
1	0	x_3	150/10	0	32/10	1	0	-6/10	
2	0	X_4	285/10	0	5/10	0	1	-5/10	
3	8	x_{I}	75/10	1	3/10	0	0	1/10	
4	Δ_{\cdot}	j	F(x)=43,3	$\Delta_1 = 0$	$\Delta_2 = -36/10$	$\Delta_3 = o$	$\Delta_4 = 0$	$\Delta_5 = 8/10$	

Поскольку среди дельта-оценок снова имеется отрицательная $\left(\Delta_2 = -\frac{36}{10} < 0\right)$, то и второй план производства не является оптимальным: предприятие может внедрить иной план производства продукции, при котором сможет получить большую прибыль.

7 шаг. Построение третьего плана производства.

а) определение ключевого столбца

Оценка Δ_2 находится во втором столбце, поэтому *второй столбец является ключевым*. Переменная, которая располагается в ключевом столбце (переменная x_2), должна <u>войти</u> в состав базисных переменных в следующей симплексной таблице.

б) определение ключевой строки

Для каждого <u>положительного</u> элемента $a_{i2} > 0$ ключевого столбца найдем отношение:

$$\Theta_i = \frac{b_i}{a_{i\,2}}.$$

Полученные значения Θ_i запишем в Θ_i -столбец (табл. 4.2).

Таблица 4.2 Расчет *🛛* - оценок во второй симплексной таблице

			c_{j}	8	6	0	0	0	
			X_{j}	x_1	x_2	x_3	X_4	X_5	Θ_i
i	C_{i}	Б	b_{i}						
1	0	x_3	150/10	0	32/10	1	0	-6/10	150/32≈4,69
2	0	X_4	285/10	0	5/10	0	1	-5/10	57
3	8	x_1	75/10	1	3/10	0	0	1/10	25
4			F(x)=43,3						
,	Δ	j		$\Delta_1 = 0$	Δ_2 =-3,6	$\Delta_3 = o$	$\Delta_4 = o$	$\Delta_5 = 8/10$	

Из значений, посчитанных в столбце Θ_i , выберем наименьшее: $\Theta_1 = 150 \ / \ 32$. Та строка, где Θ_i имеет наименьшее значение, и будет *ключевой* (первая строка). Она указывает на переменную, которая из базиса выйдет (переменная x_3), уступив свое место переменной x_2 .

Таким образом, в третьей симплексной таблице (табл. 5) базисными переменными будут: x_2 , x_4 , x_1 .

в) определение ключевого элемента

На пересечении ключевого столбца и ключевой строки находится ключевой элемент: $a_{\kappa n \kappa n} = a_{12} = \frac{32}{10}$.

Заполним третью симплексную таблицу.

Все элементы ключевой строки второй симплексной таблицы 4.2 (строка 2) делим на ключевой элемент $a_{12} = \frac{32}{10}$ и записываем на том же месте в третьей симплексной таблице 5.

Все элементы ключевого столбца, кроме ключевого, обнуляем (табл. 5).

Третья симплексная таблица

			c_{j}	8	6	0	0	0	
			x_{j}	x_{I}	x_2	x_3	X_4	x_5	Θ_i
i	c_{i}	Б	b_{i}						
1	6	x_2	150/32	0	1	10/32	0	-6/32	
2	0	X_4			0				
3	8	x_{I}			0				
4	Δ	j	F(x)=	Δ_I =	Δ_2 =	$\Delta_3 =$	$\Delta_{4} =$	$\Delta_5 =$	

Все остальные элементы (b_2 , b_3 , a_{21} , a_{23} ...), кроме элементов Θ_i , определяем по правилу прямоугольника:

$$a_{21}^{"} = a_{21}^{c} - \frac{a_{11}^{c} \cdot a_{22}^{c}}{a_{_{KRKR}}} = 0 - \frac{0 \cdot \frac{5}{10}}{\frac{32}{10}} = 0; \quad a_{23}^{"} = 0 - \frac{\frac{5}{10} \cdot 1}{\frac{32}{10}} = -\frac{5}{32};$$

$$a_{24}^{"} = 1 - \frac{\frac{5}{10} \cdot 0}{\frac{32}{10}} = 1; \quad a_{25}^{"} = -\frac{5}{10} - \frac{\frac{5}{10} \cdot -\frac{6}{10}}{\frac{32}{10}} = -\frac{13}{32};$$

$$a_{31}^{"} = 1 - \frac{0 \cdot \frac{3}{10}}{\frac{32}{10}} = 1; \quad a_{33}^{"} = 0 - \frac{\frac{3}{10} \cdot 1}{\frac{32}{10}} = -\frac{3}{32}; \quad a_{34}^{"} = 0 - \frac{\frac{3}{10} \cdot 0}{\frac{32}{10}} = 0;$$

$$a_{35}^{"} = \frac{1}{10} - \frac{\frac{3}{10} \cdot -\frac{6}{10}}{\frac{32}{10}} = \frac{5}{32};$$

$$b_{2}^{"} = \frac{285}{10} - \frac{\frac{150}{10} \cdot \frac{5}{10}}{\frac{32}{10}} = \frac{837}{32}; \quad b_{3}^{"} = \frac{75}{10} - \frac{\frac{150}{10} \cdot \frac{3}{10}}{\frac{32}{10}} = \frac{195}{32}.$$

Третья симплексная таблица

			C_{j}	8	6	0	0	0	
			x_{j}	x_1	x_2	<i>X</i> ₃	X_4	x_5	Θ_i
i	C_{i}	Б	b_{i}						
1	6	x_2	150/32	0	1	10/32	0	-6/32	
2	0	X_4	837/32	0	0	-5/32	1	-13/32	
3	8	x_{l}	195/32	1	0	-3/32	0	5/32	
4	Δ	j	F(x) = $= 2460/32$	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 36/32$	$\Delta_4 = o$	$\Delta_5 = 4/32$	

Таким образом, получили третий план производства, при котором предприятие производит 195/32 ед. продукции первого типа и 150/32 ед. продукции второго типа, при этом у предприятия остается в запасе только рабочая сила в количестве 837/32 чел.-часов. Сырье и время работы станочного оборудования используются без остатка (т.к. переменных x_3 и x_5 в базисе нет). Размер прибыли предприятия составляет:

$$F(X) = 8 \cdot \frac{195}{32} + 6 \cdot \frac{150}{32} + 0 \cdot 0 + 0 \cdot \frac{837}{32} + 0 \cdot 0 = \frac{2460}{32} = 76\frac{14}{16}$$
 д.е.

<u>8 шаг (повторение 4 и 6 шагов).</u> Проверка третьего плана производства на оптимальность.

Проверим третий план производства на оптимальность с помощью дельта-оценок:

$$\begin{split} & \Delta_1 = \left(6 \cdot 0 + 0 \cdot 0 + 8 \cdot 1\right) - 8 = 0 \,; & \Delta_2 = \left(6 \cdot 1 + 0 \cdot 0 + 8 \cdot 0\right) - 6 = 0 \,; \\ & \Delta_3 = \left(6 \cdot \frac{10}{32} + 0 \cdot -\frac{5}{32} + 8 \cdot -\frac{3}{32}\right) - 0 = \frac{36}{32} \,; \ \Delta_4 = \left(6 \cdot 0 + 0 \cdot 1 + 8 \cdot 0\right) - 0 = 0 \,; \\ & \Delta_5 = \left(6 \cdot -\frac{6}{32} + 0 \cdot -\frac{13}{32} + 8 \cdot \frac{5}{32}\right) - 0 = \frac{4}{32} \,. \end{split}$$

Поскольку среди дельта-оценок отрицательных нет, то третий опорный план оптимален:

$$X^* = (x_1^*; x_2^*; x_3^*; x_4^*; x_5^*) = \left(\frac{195}{32}; \frac{150}{32}; 0; \frac{837}{32}; 0\right); F_{max}(X^*) = 76\frac{14}{16} \ \delta.e.$$

Ответ: двумя методами (графическим и симплексным) определили оптимальный план производства продукции двух типов для предприятия, стремящегося получить максимальную прибыль и обладающего ограниченным количеством сырья, трудовых ресурсов и временем работы станочного оборудования. Было установлено, что предприятие может получить максимальную прибыль в размере $76\frac{14}{16}$ д.е. при условии производства $\frac{195}{32} = 6\frac{3}{32}$ ед. продукции первого типа и $\frac{150}{32} = 4\frac{22}{32}$ ед. продукции второго типа. При этом у предприятия останется $\frac{837}{32} = 26\frac{5}{32}$ чел-часов трудовых ресурсов. Сырье и время работы станочного оборудования будут использованы полностью (без остатка).

Задание 6. Проверка полученного решения на целочисленность

Как видим, среди базисных переменных последнего плана производства продукции есть нецелые значения: $x_1 = \frac{195}{32}$, $x_2 = \frac{150}{32}$ и $x_4 = \frac{837}{32}$. Поэтому следует перейти к выполнению задания 7.

Задание 7. Поиск целочисленного решения задачи методом Гомори

Алгоритм метода Гомори состоит из нескольких этапов:

<u>1 этап.</u> Поиск нецелочисленного решения задачи симплексным методом (выполнен в задании 5).

<u>2 этап.</u> Запись последней симплексной таблицы и составление системы линейных уравнений для нее.

В нашем случае последняя симплексная таблица (таблица 5.1) имеет вид:

			c_{j}	8	6	0	0	0	
				x_I	x_2	x_3	X_4	x_5	Θ_i
			X_{j}						
i	C_{i}	Б	b_{i}						
1	6	x_2	150/32	0	1	10/32	0	-6/32	
2	0	X_4	837/32	0	0	-5/32	1	-13/32	
3	8	x_{I}	195/32	1	0	-3/32	0	5/32	
4			F(x)=						
4	Δ	j	=2460/32	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 36/32$	$\Delta_4 = 0$	$\Delta_5 = 4/32$	

Данной таблице соответствует система трех линейных уравнений:

$$\begin{cases} 0x_1 + 1x_2 + \frac{10}{32}x_3 + 0x_4 - \frac{6}{32}x_5 = \frac{150}{32}, \\ 0x_1 + 0x_2 - \frac{5}{32}x_3 + 1x_4 - \frac{13}{32}x_5 = \frac{837}{32}, \\ 1x_1 + 0x_2 - \frac{3}{32}x_3 + 0x_4 + \frac{5}{32}x_5 = \frac{195}{32}. \end{cases}$$

3 этап. Выбор переменной для построения сечения Гомори.

Среди базисных переменных, содержащих дробную часть, выбирается та, у которой размер <u>дробной</u> части больше, чем у остальных (а при равенстве дробных частей – любая базисная переменная).

Разложим наши нецелочисленные переменные на целую и дробную части:

$$\begin{aligned} x_1 &= \frac{195}{32} = \left[\frac{192}{32} \right] + \left\{ \frac{3}{32} \right\} = 6 \left\{ \frac{3}{32} \right\}; \\ x_2 &= \frac{150}{32} = \left[\frac{128}{32} \right] + \left\{ \frac{22}{32} \right\} = 4 \left\{ \frac{22}{32} \right\}; \\ x_4 &= \frac{837}{32} = \left[\frac{832}{32} \right] + \left\{ \frac{5}{32} \right\} = 26 \left\{ \frac{5}{32} \right\}. \end{aligned}$$

Поскольку наибольшая дробная часть $\left\{ \frac{22}{32} \right\}$ принадлежит переменной

 x_2 , то ее и следует выбрать для построения сечения Гомори.

4 этап. Построение сечения Гомори.

4.1. Из построенной системы уравнений принимается та строка, которая соответствует выбранной базисной переменной. Переменной x_2 соответствует первое уравнение системы:

$$0 \cdot x_1 + 1 \cdot x_2 + \frac{10}{32} \cdot x_3 + 0 \cdot x_4 - \frac{6}{32} \cdot x_5 = \frac{150}{32}.$$

- 4.2. Выполняется обработка всех членов выбранного уравнения:
- а) у <u>положительных</u> коэффициентов откидываются целые части и оставляются только дробные части:

положительный коэффициент при переменной x_2 (имеется целая часть, поэтому ее следует откинуть): 1-1=0;

положительный коэффициент при переменной x_3 (не имеется целой части, поэтому он остается неизменным): $\frac{10}{32}$;

положительный свободный член в правой части уравнения (содержит целую часть, поэтому ее следует откинуть): $4\frac{22}{32}-4=\frac{22}{32}$;

б) у отрицательных коэффициентов откидываются целые части (если они есть), а затем к образовавшейся дроби прибавляется единица:

отрицательный коэффициент при переменной x_5 (целой части нет, откидывать нечего, осталось только прибавить единицу): $-\frac{6}{32} + 1 = \frac{26}{32}$.

Таким образом, образовались следующие элементы:

$$\frac{10}{32} x_3; \frac{26}{32} x_5$$
 и $\frac{22}{32}$.

4.3. Новые элементы записывают в виде неравенства типа ≥:

$$\frac{10}{32}x_3 + \frac{26}{32}x_5 \ge \frac{22}{32}.$$

Полученное неравенство и называется сечением Гомори. Его словесным описанием выступает следующая формулировка: сечением Гомори называется неравенство, в котором сумма дробных частей, оставшихся от коэффициентов симплексной таблицы при выбранной базисной переменной, больше или равна дробной части свободного члена той же переменной.

5 этап. Решение новой задачи симплексным методом.

5.1. К системе уравнений последней симплексной таблицы добавляют сечение Гомори:

$$\begin{cases} 0x_1 + 1x_2 + \frac{10}{32}x_3 + 0x_4 - \frac{6}{32}x_5 = \frac{150}{32}, \\ 0x_1 + 0x_2 - \frac{5}{32}x_3 + 1x_4 - \frac{13}{32}x_5 = \frac{837}{32}, \\ 1x_1 + 0x_2 - \frac{3}{32}x_3 + 0x_4 + \frac{5}{32}x_5 = \frac{195}{32}, \\ \frac{10}{32}x_3 + \frac{26}{32}x_5 \ge \frac{22}{32}. \end{cases}$$

5.2. Полученную систему приводят к базисному виду. Для этого все элементы последнего неравенства умножают на (-1), отчего неравенство меняет знак: $-\frac{10}{32}x_3 - \frac{26}{32}x_5 \le -\frac{22}{32}$. А затем в левую часть полученного неравенства добавляют новую базисную переменную x_6 , чтобы обратить неравенство в уравнение. Следовательно, получается новая задача линейного программирования, записанная в базисной форме:

$$F(X) = 8x_{1} + 6x_{2} + 0x_{3} + 0x_{4} + 0x_{5} + 0x_{6} \rightarrow max$$

$$\begin{cases}
0x_{1} + 1x_{2} + \frac{10}{32}x_{3} + 0x_{4} - \frac{6}{32}x_{5} + 0x_{6} = \frac{150}{32}, \\
0x_{1} + 0x_{2} - \frac{5}{32}x_{3} + 1x_{4} - \frac{13}{32}x_{5} + 0x_{6} = \frac{837}{32}, \\
1x_{1} + 0x_{2} - \frac{3}{32}x_{3} + 0x_{4} + \frac{5}{32}x_{5} + 0x_{6} = \frac{195}{32}, \\
-\frac{10}{32}x_{3} - \frac{26}{32}x_{5} + 1x_{6} = -\frac{22}{32}.
\end{cases}$$

$$(8)$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0, x_{5} \ge 0, x_{6} \ge 0.$$

5.3. Полученную задачу вновь решают симплексным методом.

Для этого вновь прибегают к записи условий (7)-(8) в виде симплексной таблицы (таблица 6).

			c_{j}	8	6	0	0	0	0	
			x_{j}	x_{I}	x_2	x_3	X_4	x_5	x_6	Θ_i
i	C_{i}	Б	b_{i}							
1	6	x_2	150/32	0	1	10/32	0	-6/32	0	
2	0	X_4	837/32	0	0	-5/32	1	-13/32	0	
3	8	x_1	195/32	1	0	-3/32	0	5/32	0	
4	0	X_6	-22/32	0	0	-10/32	0	-26/32	1	
5		Δ_j	F(x) = $= 2460/32$	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 36/32$	$\Delta_4 = o$	$\Delta_5 = 4/32$	$\Delta_6 = o$	
		$oldsymbol{eta}_j$		ı	-	$\beta_3 = -36/10$	-	$\beta_5 = -4/26$	-	

Однако для проверки полученного плана производства на оптимальность используются не стандартные дельта-оценки, а бета-оценки, определяемые как отношение дельта-оценок к дробным элементам строки Гомори:

$$\beta_j = \frac{\Delta_j}{a_{\Gamma j}}.$$

Среди полученных бета-оценок всегда выбирается <u>наименьшая по модулю</u>. Она указывает на *ключевой столбец* симплексной таблицы, переменная которого должна войти в базис следующего решения. В нашем случае это пятый столбец, содержащий переменную x_5 .

 $\mathit{Ключевой}$ строкой в симплексной таблице, содержащей сечение Гомори, всегда выступает строка построенного сечения. Это означает, что переменная сечения должны уйти из базиса следующего решения. В нашем случае это переменная x_6 .

Таким образом, в следующей симплексной таблице будет сформирован новый базис: x_2 , x_4 , x_1 и x_5 .

На пересечении ключевой строки и ключевого столбца образовался *ключевой элемент*: $a_{_{KJKJ}}=a_{_{45}}=-26/32$.

Пересчет симплексной таблицы выполняется общепринятым способом. В таблице 6.1 представлена вновь полученная симплексная таблица.

Таблица 6.1 **Пересчет первой симплексной таблицы, содержащей сечение Гомори**

			c_{j}	8	6	0	0	0	0	
			x_{j}	x_{I}	x_2	x_3	X_4	x_5	x_6	Θ_i
i	C_{i}	Б	b_{i}							
1	6	x_2	63/13	0	1	5/13	0	0	-6/26	
2	0	\mathcal{X}_{4}	53/2	0	0	0	1	0	-13/26	
3	8	x_1	155/26	1	0	-2/13	0	0	5/26	
4	0	X_5	11/13	0	0	5/13	0	1	-32/26	
5			F(x)=							
		Δ_{j}	=1618/13	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 14/13$	$\Delta_4 = 0$	$\Delta_5 = o$	$\Delta_6 = 4/26$	

Как видим, новое решение опять оказалось нецелочисленным. Следует снова повторить 3-5 этапы алгоритма.

<u>6 этап (повторение 3 этапа).</u> Выбор переменной для построения сечения Гомори.

Разложим наши нецелочисленные переменные на целую и дробную части:

$$x_{2} = \frac{63}{13} = \left[\frac{52}{13}\right] + \left\{\frac{11}{13}\right\} = 4\left\{\frac{11}{13}\right\}; \qquad x_{4} = \frac{53}{2} = \left[\frac{52}{2}\right] + \left\{\frac{1}{2}\right\} = 26\left\{\frac{1}{2}\right\};$$
$$x_{1} = \frac{155}{26} = \left[\frac{130}{26}\right] + \left\{\frac{25}{26}\right\} = 5\left\{\frac{25}{26}\right\}; \qquad x_{5} = \left\{\frac{11}{13}\right\}.$$

Поскольку наибольшая дробная часть $\left\{ \frac{25}{26} \right\}$ принадлежит переменной

 x_1 , то ее и следует выбрать для построения сечения Гомори.

7 этап (повторение 4 этапа). Построение сечения Гомори.

7.1. Переменной x_1 соответствует третья строка таблицы 6.1:

$$1 \cdot x_1 + 0 \cdot x_2 - \frac{4}{26} \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 + \frac{5}{26} \cdot x_6 = \frac{155}{26}.$$

- 7.2. Выполняем обработку всех членов выбранного уравнения:
- а) у <u>положительных</u> коэффициентов откидываем целые части и оставляем только дробные части:

положительный коэффициент при переменной x_I (имеется целая часть, поэтому ее следует откинуть): I-I=0;

положительный коэффициент при переменной x_6 (не имеется целой части, поэтому он остается неизменным): $\frac{5}{26}$;

положительный свободный член в правой части уравнения (содержит целую часть, поэтому ее следует откинуть): $5\frac{25}{26} - 5 = \frac{25}{26}$;

б) у <u>отрицательных</u> коэффициентов откидываем целые части (если они есть), а затем к образовавшейся дроби прибавляем единицу:

отрицательный коэффициент при переменной x_3 (целой части нет, откидывать нечего, осталось только прибавить единицу): $-\frac{4}{26} + 1 = \frac{22}{26}$.

Таким образом, образовались следующие элементы:

$$\frac{22}{26} x_3; \frac{5}{26} x_6 \text{ и } \frac{25}{26}.$$

7.3. Записываем сечение Гомори:

$$\frac{22}{26}x_3 + \frac{5}{26}x_6 \ge \frac{25}{26}.$$

Преобразуем его в уравнение:

$$-\frac{22}{26}x_3 - \frac{5}{26}x_6 \le -\frac{25}{26};$$

$$0x_1 + 0x_2 - \frac{22}{26}x_3 + 0x_4 + 0x_5 - \frac{5}{26}x_6 + 1x_7 = -\frac{25}{26}.$$

8 этап (повторение 5 этапа). Решение новой задачи симплексным методом.

Составляем симплексную таблицу 7. Ключевой столбец определяем по минимальной по модулю бета-оценке: это шестой столбец, содержащий переменную x_6 .

Ключевой строкой всегда остается строка с переменной сечения Гомори: пятая строка с переменной x_7 .

На пересечении ключевой строки и ключевого столбца сформировался ключевой элемент: $a_{\kappa_{JKJ}}=a_{56}=-5/26.$

Таблица 7 Запись второй симплексной таблицы, содержащей сечение Гомори

			c_{j}	8	6	0	0	0	0	0	
			x_{j}	x_1	x_2	X_3	X_4	x_5	x_6	x_7	Θ_i
i	C_{i}	Б	b_{i}								
1	6	x_2	63/13	0	1	5/13	0	0	-6/26	0	
2	0	X_4	53/2	0	0	0	1	0	-13/26	0	
3	8	x_{I}	155/26	1	0	-2/13	0	0	5/26	0	
4	0	x_5	11/13	0	0	5/13	0	1	-32/26	0	
5	0	x_7	-25/26	0	0	-22/26	0	0	-5/26	1	
6			F(x)=								
		$\mathbf{\Lambda}_{j}$	=998/13	$\Delta_1 = 0$	$\Delta_2 = 0$	$\Delta_3 = 14/13$	$\Delta_4 = 0$	$\Delta_5 = o$	$\Delta_6 = 4/26$	$\Delta_7 = 0$	
	ļ	3_j		-	-	$\beta_3 = -14/11$	-	-	$\beta_6 = -4/5$	-	

Далее пересчитываем таблицу 7 обычным способом. Тогда будет сформирована таблица 7.1:

Таблица 7.1 **Пересчет второй симплексной таблицы, содержащей сечение Гомори**

			c_{j}	8	6	0	0	0	0	0	
			x_{j}	x_I	x_2	X_3	X_4	x_5	X_6	x_7	Θ_i
i	C_{i}	Б	b_{i}								
1	6	x_2	6	0	1	7/5	0	0	0	-6/5	
2	0	X_4	29	0	0	11/5	1	0	0	-13/5	
3	8	x_{I}	5	1	0	-1	0	0	0	1	
4	0	x_5	7	0	0	29/5	0	1	0	-32/5	
5	0	x_6	5	0	0	12/5	0	0	1	-26/5	
6		Λ_j	F(x)=7	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 2/5$	$\Delta_4 = 0$	$\Delta_5 = o$	$\Delta_6 = 0$	$\Delta_7 = 4/5$	

Поскольку полученное решение задачи целочисленно и среди Δ -оценок нет отрицательных, то оно оптимально.

Ответ: производство *5 ед*. первого типа продукции и *6 ед*. второго типа продукции позволит получить предприятию максимальную прибыль в размере *76 д.е.* При этом у предприятия останется *29 чел-часов* трудовых ресурсов *7 ст.-смен* работы станочного оборудования. Сырье будет использовано полностью.

Задание 8. Контроль правильности найденного решения

Выпишите все симплексные таблицы, построенные Вами при решении задачи, и проконтролируйте их содержимое по данным Приложения.

			c_{j}	8	6	0	0	0	
			x_j	x_I	x_2	x_3	X_4	x_5	Θ_i
i	C_i	Б	b_{i}						
1	0	X_3	60	6	5	1	0	0	60/6=10
2	0	X_4	66	5	2	0	1	0	66/5=13,2
3	0	x_5	75	10	3	0	0	1	75/10=7,5
4		•	F(x)=0						
4	Δ	j		$\Delta_1 = -8$	$\Delta_2 = -\epsilon$	$\Delta_3 =$	$O \mid \Delta_4 =$	$=0$ $\Delta_5=0$	×
	<u> </u>				_		•		T
			c_{j}	8	6	0	0	0	
			x_{j}	x_I	x_2	x_3	X_4	X_5	Θ_i
i	C_{i}	Б	b_{i}						
1	0	x_3	150/10	0	32/10	1	0	-6/10	150/32≈4,69
2	0	X_4	285/10	0	5/10	0	1	-5/10	57
3	8	x_{I}	75/10	1	3/10	0	0	1/10	25
4			F(x)=43,3		$\Delta_2 = -$				
	Δ	j		$\Delta_1 = 0$	3,6	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 8/10$	

	I	1										
				J	8	6		0	0	0	0	
				x_i	x_{I}	x_2	-	x_3	X_4	x_5	x_6	Θ_i
i	C_i	Б	b_i									ı
1	6	x_2		32)	1	10)/32	0	-6/32	0	
2	0	X_4	837/.	32)	0	-5,	/32	1	-13/32	0	
3	8	x_1		32	1	0	-3,	/32	0	5/32	0	
4	0	X_6	-22/.	32	0	0	-10	0/32	0	-26/32	1	
5		$\overline{\Delta_j}$	F(x)	$)_{=} \Delta_{I}$	y = 0	$\Delta_2 = 0$	$\Delta_3 =$	36/32	$\Delta_4 = o$	$\Delta_5 = 4/32$	$\Delta_6 = o$	
		$oldsymbol{eta}_j$	=2460		-	-	$\beta_3 =$	-36/10	-	$\beta_5 = -4/26$	-	
				Q	6	()	0	0	0	0	
			c_{j}	$\frac{8}{x_1}$	x_2		.3	x_4	x_5	x_6	x_7	_
			x_{j}	<i>s</i> •1			3	34	75	100		Θ_i
i	C_{i}	Б	b_{i}									
1	6	x_2	63/13	0	1	5/1	13	0	0	-6/26	0	
2	0	X_4	53/2	0	0	0)	1	0	-13/26	0	
3	8	x_1	155/26	1	0	-2/	13	0	0	5/26	0	
4	0	x_5	11/13	0	0	5/1	13	0	1	-32/26	0	
5	0	x_7	-25/26	0	0	-22	/26	0	0	-5/26	1	
6	Δ	\mathbf{A}_{j}	F(x)=		$\Delta_2 = 0$	$\Delta_3 = 1$	14/13	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 4/20$	$\Delta_7 = 0$	
	ļ	β_{j}	=998/13	-	-	$\beta_3 = -$	14/11	-	-	$\beta_6 = -4/5$	-	
				8	6)	0	0	0	0	
			c_{j}	x_1	x_2			x_4	x_5	x_6	x_7	
			x_{j}	1	2		3	4	J		,	Θ_i
i	C_{i}	Б	b_i									
1	6	x_2	6	0	1	7,	/5	0	0	0	-6/5	
2	0	X_4	29	0	0	11	1/5	1	0	0	-13/5	
3	8	x_{I}	5	1	0		1	0	0	0	1	
4	0	x_5	7	0	0	29	0/5	0	1	0	-32/5	
5	0	x_6	5	0	0	12	2/5	0	0	1	-26/5	
6	Δ	Λ_j	F(x)=7	$\Delta_I = 0$	$\Delta_2 =$	$0 \Delta_3 =$	= 2/5	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 4/5$	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Федосеев, В. В. Экономико-математические методы и прикладные модели: учебник для бакалавров по направлениям подготовки «Экономика» и «Менеджмент»/ В. В. Федосеев, А. Н. Гармаш, И. В. Орлова; под ред. В. В. Федосеева. 3-е изд., перераб. и доп. М.: Юрайт, 2013. 328 с.
- 2. Исследование операций в экономике: учеб. пособие для вузов по экономическим специальностям и направлениям/ [Н. Ш. Кремер, Б. А. Путко, И. М. Тришин, М. Н. Фридман]; под ред. Н. Ш. Кремера. 3-е изд., перераб. и доп. М.: Юрайт, 2013. 438 с.
- 3. Покровский, В. В. Математические методы в бизнесе и менеджменте: учеб. пособие/ В. В. Покровский. 2-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2008. 109 с.
- 4. Целочисленное программирование: метод. указания для самостоят. работы студентов эконом. специальностей/ [сост.: О. В. Авдеева, О. И. Микрюкова]. Вологда: ВоГТУ, 2007. 19 с.

Приложение Запись двух последних симплексных таблиц, содержащих нецелочисленное и целочисленное решение задачи

			c_{i}	15	12	0	0	0	_
i	C_i	Б	b_i	x_1	x_2	x_3	X_4	X_5	$\mathbf{\Theta}_i$
1	0	x_3	1	0	0	1	-4/7	-1/14	
2	12	x_2	5	0	1	0	2/7	-3/14	
3	15	x_1	3,5	1	0	0	-1/14	5/28	
		Λ_j	F(x)=112,5	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 33/14$	$\Delta_5 = 3/28$	

			c_{i}	15	12	0	0	0	0	0	
i	C_{i}	Б	b_i	x_1	x_2	x_3	X_4	X_5	X_6	x_7	Θ_i
1	0	x_3	2	0	0	1	0	0	0	-1	
2	12	x_2	8	0	1	0	2	0	0	-3	
3	15	x_{l}	1	1	0	0	-3/2	0	0	5/2	
4	0	X_5	14	0	0	0	8	1	0	-14	
5	0	X_6	2	0	0	0	1/2	0	1	-5/2	
6	2	1_{j}	F(x)=111	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 3/2$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 3/2$	

			<i>C</i> ,	10	5	0	0	0	
i	c_{i}	Б	b_{i}	x_1	x_2	X_3	X_4	X_5	Θ_i
1	10	x_{I}	4,4	1	0	3/5	-2/5	0	
2	5	x_2	6	0	1	-1	1	0	
3	0	x_5	3,4	0	0	8/5	-12/5	1	
4	Δ	Λ_j	F(x)=74	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 1$	$\Delta_4 = 1$	$\Delta_5 = 0$	

			C_{i}	10	5	0	0	0	0	0	
i	C_{i}	Б	b_i	X_1	x_2	x_3	X_4	x_5	x_6	x_7	Θ_i
1	10	x_1	6	1	0	1	0	0	0	-2	
2	5	x_2	2	0	1	-2	0	0	0	5	
3	0	x_5	13	0	0	4	0	1	0	-12	
4	0	X_4	4	0	0	1	1	0	0	-5	
5	0	x_6	2	0	0	0	0	0	1	-3	
6		Λ_j	F(x)=70	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 5$	

			<i>C</i> ,	15	13	0	0	0	
i	c_{i}	Б	b_i	x_1	x_2	X_3	X_4	x_5	Θ_i
1	13	x_2	42/9	0	1	8/27	0	-1/27	
2	0	X_4	1/3	0	0	-5/27	1	-23/27	
3	15	x_1	10/3	1	0	-5/27	0	4/27	
4		Λ_j	F(x)=332/3	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 29/27$	$\Delta_4 = 0$	$\Delta_5 = 47/27$	

			C_{i}	15	13	0	0	0	0	0	
i	c_{i}	Б	b_i	x_1	x_2	X_3	X_4	x_5	x_6	x_7	Θ_i
1	13	x_2	2	0	1	0	0	-1/3	0	8/3	
2	0	X_4	2	0	0	0	1	-2/3	0	-5/3	
3	15	x_1	5	1	0	0	0	1/3	0	-5/3	
4	0	x_5	2	0	0	0	0	-2/3	1	-8/3	
5	0	x_3	9	0	0	1	0	1	0	-9	
6		Λ_j	F(x)=101	$\Delta_I = 0$	$\Delta_1 = 0$	$\Delta_2 = 0$	$\Delta_4 = 0$	$\Delta_5 = 2/3$	$\Delta_6 = 0$	$\Delta_7 = 29/3$	

			c_{i}	6	6	0	0	0	
i	C_{i}	Б	b_i	x_1	x_2	x_3	X_4	X_5	$\mathbf{\Theta}_i$
1	6	x_2	9,2	0	1	0	2/5	-1/5	
2	6	x_1	8	1	0	0	-1/3	1/3	
3	0	x_3	1,8	0	0	1	-31/15	13/15	
4		Λ_j	F(x)=103,2	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 2/5$	$\Delta_5 = 4/5$	

			c_{i}	6	6	0	0	0	0	0	
i	C_{i}	Б	b_{i}	x_{I}	x_2	x_3	X_4	x_5	X_6	x_7	Θ_i
1	6	x_2	8	0	1	0	0	-1	0	1	
2	6	x_{l}	9	1	0	0	0	1	0	-5/6	
3	0	x_3	8	0	0	1	0	5	0	-31/6	
4	0	X_4	3	0	0	0	1	2	0	-5/2	
5	0	x_6	2	0	0	0	0	1	1	-7/3	
6		$\overline{\Delta}_j$	F(x)=102	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 1$	

			c_{i}	25	17	0	0	0	
i	C_i	Б	b_{i}	x_1	x_2	X_3	X_4	x_5	Θ_i
1	17	x_2	29/5	0	1	1/5	-1/5	0	
2	25	x_1	196/25	1	0	-1/25	6/25	0	
3	0	x_5	148/25	0	0	-13/25	3/25	1	
4		Λ_j	F(x) = 294.6	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 12/5$	$\Delta_4 = 13/5$	$\Delta_5 = 0$	

			C_{i}	25	17	0	0	0	0	0	
i	C_{i}	Б	b_i	x_1	x_2	X_3	X_4	X_5	x_6	x_7	Θ_i
1	17	x_2	5	0	1	0	-4/11	0	0	5/11	
2	25	x_{I}	8	1	0	0	3/11	0	0	⁻¹ / ₁₁	
3	0	x_5	8	0	0	0	6/11	1	0	-13/11	
4	0	x_3	4	0	0	1	9/11	0	0	-25/11	
5	0	x_6	1	0	0	0	3/11	0	1	-12/11	
6		$\overline{\Lambda}_j$	F(x)=285	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 7/11$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 60/11$	

			c_{i}	12	6	0	0	0	
i	c_{i}	Б	b_i	x_1	x_2	X_3	X_4	X_5	Θ_i
1	0	X_3	18,8	0	0	1	1/10	-7/10	
2	12	x_1	10,4	1	0	0	3/10	-1/10	
3	6	x_2	20	0	1	0	-1/2	1/2	
4		Λ_j	F(x) = 244.8	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 3/5$	$\Delta_5 = 9/5$	

			c_{i}	12	15	0	0	0	0	
i	C_{i}	Б	b_i	x_{I}	x_2	X_3	X_4	X_5	x_6	Θ_i
1	0	x_3	18	0	0	1	0	-1	1	
2	12	x_1	8	1	0	0	0	-1	3	
3	6	x_2	24	0	1	0	0	2	-5	
4	0	X_4	8	0	0	0	1	3	-10	
5		Δ_j	F(x)=240	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 6$	

			c_{i}	10	16	0	0	0	
i	C_{i}	Б	b_{i}	x_1	x_2	X_3	X_4	x_5	Θ_i
1	0	x_3	20,5	0	0	1	-5/2	7/2	
2	10	x_1	5	1	0	0	1	-2	
3	16	x_2	6,5	0	1	0	-1/2	5/2	
4	Δ	Λ_j	F(x)=154	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 2$	$\Delta_5 = 4$	

			C_{i}	10	16	0	0	0	0	
i	C_{i}	Б	b_i	x_1	x_2	X_3	X_4	X_5	X_6	Θ_i
1	0	x_3	23	0	0	1	0	6	-5	
2	10	x_1	4	1	0	0	0	-3	2	
3	16	x_2	7	0	1	0	0	2	-1	
4	0	X_4	1	0	0	0	1	1	-2	
5		Λ_j	F(x)=152	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 2$	$\Delta_6 = 4$	

			c_{i}	12	16	0	0	0	
i	C_{i}	Б	b_{i}	x_1	x_2	x_3	X_4	x_5	Θ_i
1	12	x_1	6	1	0	1/2	0	-1/2	
2	0	X_4	4,4	0	0	-9/10	1	3/10	
3	16	x_2	4,2	0	1	-1/5	0	2/5	
4	Δ	Λ_j	F(x)=139,2	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 2.8$	$\Delta_4 = 0$	$\Delta_5 = 0.4$	

			c_{i}	12	16	0	0	0	0	0	
i	C_i	Б	b_i	x_{I}	x_2	X_3	X_4	x_5	X_6	x_7	Θ_i
1	12	x_1	6	1	0	0	0	0	-2	1	
2	0	X_4	5	0	0	0	1	0	3/2	-3/2	
3	16	x_2	4	0	1	0	0	0	3/2	-1/2	
4	0	x_5	1	0	0	0	0	1	-7/2	1/2	
5	0	x_3	1	0	0	1	0	0	1/2	-3/2	
6	Δ	Λ_j	F(x)=136	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 4$	

			c_{i}	3	6	0	0	0	
i	C_{i}	Б	b_{i}	x_1	x_2	X_3	X_4	X_5	Θ_i
1	6	x_2	8,2	0	1	3/5	0	-2/5	
2	0	X_4	3,8	0	0	17/5	1	-18/5	
3	3	x_1	7	1	0	-1	0	1	
4		$\overline{\Delta_j}$	F(x) = 70.2	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 3/5$	$\Delta_4 = 0$	$\Delta_5 = 3/5$	

			c_i	3	6	0	0	0	0	_
i	C_{i}	Б	b_i	x_{I}	x_2	x_3	X_4	x_5	X_6	Θ_i
1	6	x_2	9	0	1	1	0	0	-1	
2	0	X_4	11	0	0	7	1	0	-9	
3	3	x_1	5	1	0	-2	0	0	5/2	
4	0	x_5	2	0	0	1	0	1	-5/2	
5		λ_j	F(x)=69	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 3/2$	

			c_{i}	5	10	0	0	0	
i	c_{i}	Б	b_i	x_1	x_2	X_3	X_4	X_5	Θ_i
1	10	x_{l}	11,5	1	0	5/14	-3/14	0	
2	5	x_2	10	0	1	-1/7	2/7	0	
3	0	x_5	2,5	0	0	-17/14	-1/14	1	
4	Δ	Λ_j	F(x)=157,5	$\Delta_1 = 0$	$\Delta_2 = 0$	$\Delta_3 = 5/14$	$\Delta_4 = 25/14$	$\Delta_5 = 0$	

			c_{i}	5	10	0	0	0	0	0	
i	C_{i}	Б	b_i	x_1	x_2	X_3	X_4	X_5	X_6	x_7	Θ_i
1	10	x_1	9	1	0	0	-2	0	0	5	
2	5	x_2	11	0	1	0	1	0	0	-2	
3	0	x_5	11	0	0	0	6	1	0	-17	
4	0	x_3	7	0	0	1	5	0	0	-14	
5	0	x_6	2	0	0	0	1	0	1	-5	
6		Λ_j	F(x)=155	$\Delta_I = 0$	$\Delta_2 = 0$	$\Delta_3 = 0$	$\Delta_4 = 0$	$\Delta_5 = 0$	$\Delta_6 = 0$	$\Delta_7 = 5$	

ОГЛАВЛЕНИЕ

Оощие положения	s
1. Постановка задачи оптимального способа использования ресурсов	
предприятия	3
2. Математическая модель задачи оптимального способа использования ресурсов	
Задания к выполнению	5
Методические указания по выполнению контрольной работы	7
Задание 1. Запись условия задачи оптимального способа использования ресурсов	
предприятия	7
Задание 2. Выбор исходных данных по номеру зачетной книжки	
Задание 3. Ввод условных обозначений задачи оптимального использования	
ресурсов предприятия	8
Задание 4. Построение математической модели задачи линейного	
программирования с различными целевыми функциями	9
Задание 5. Поиск решения задачи оптимального использования ресурсов	
предприятия (по критерию максимума прибыли от реализации продукции)	12
Задание 6. Проверка полученного решения на целочисленность	
Задание 7. Поиск целочисленного решения задачи методом Гомори	
Задание 8. Контроль правильности найденного решения	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	
	39